GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells

Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study ther...

Full description

Bibliographic Details
Main Authors: Christensen, David R. (Author), Calder, Philip C. (Author), Houghton, Franchesca D. (Author)
Format: Article
Language:English
Published: 2015-12-07.
Subjects:
Online Access:Get fulltext
LEADER 01895 am a22001573u 4500
001 384968
042 |a dc 
100 1 0 |a Christensen, David R.  |e author 
700 1 0 |a Calder, Philip C.  |e author 
700 1 0 |a Houghton, Franchesca D.  |e author 
245 0 0 |a GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells 
260 |c 2015-12-07. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/384968/1/__userfiles.soton.ac.uk_Users_nl2_mydesktop_Deposits_Christensen%2520et%2520al%25202015.pdf 
520 |a Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs. 
540 |a other 
655 7 |a Article