Activation of Mitogen Activated Protein Kinase pathways during the death of PC12 cells is dependent on the state of differentiation

PC12 cells that are differentiated with NGF and cAMP become totally dependent on these factors for their survival, unlike those that are differentiated with NGF alone. We have asked whether the MAP Kinases, ERKs, JNKs and p38s play a role in the cell death induced by withdrawal of trophic factors on...

Full description

Bibliographic Details
Main Authors: Lambeng, N. (Author), Willaime-Morawek, S. (Author), Mariani, J. (Author), Ruberg, M. (Author), Brugg, B. (Author)
Format: Article
Language:English
Published: 2003-03-17.
Subjects:
Online Access:Get fulltext
Description
Summary:PC12 cells that are differentiated with NGF and cAMP become totally dependent on these factors for their survival, unlike those that are differentiated with NGF alone. We have asked whether the MAP Kinases, ERKs, JNKs and p38s play a role in the cell death induced by withdrawal of trophic factors on NGF- and NGF/cAMP-differentiated PC12 cells. By Western-blot analyses with antibodies directed against the activated forms of these kinases, we show that when the trophic factors were withdrawn, ERK phosphorylation was reduced to very low levels within 1 h in both cases. Changes in the other enzymes were observed only in the NGF/cAMP-differentiated cells, in which the JNK phosphorylation increased about 160% by 6 h and that of p38 increased linearly to at least 18-fold throughout the cell death process. The increases in p38 and JNK phosphorylation were implicated in the death of the cells, since the p38 inhibitor PD169316 and the JNK inhibitor SP600125 were protective. These results demonstrate that the state of differentiation of PC12 cells, a model for the differentiation of sympathetic neurons, determines their vulnerability to cell death by modifying the state of phosphorylation and the regulation of specific kinases implicated in signal transduction pathways that are responsible for the survival or the death of these cells.