Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity

Oxidation and lipolytic remodeling of LDL are believed to stimulate LDL entrapment in the arterial wall, expanding the inflammatory response and promoting atherosclerosis. However, the cellular responses and molecular mechanisms underlying the atherogenic effects of lipolytically modified LDL are in...

Full description

Bibliographic Details
Main Authors: Janne Oestvang, Dominique Bonnefont-Rousselot, Ewa Ninio, Jukka K. Hakala, Berit Johansen, Marit W. Anthonsen
Format: Article
Language:English
Published: Elsevier 2004-05-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520318228
id doaj-01b21776c06f480c92fde7595504a831
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Janne Oestvang
Dominique Bonnefont-Rousselot
Ewa Ninio
Jukka K. Hakala
Berit Johansen
Marit W. Anthonsen
spellingShingle Janne Oestvang
Dominique Bonnefont-Rousselot
Ewa Ninio
Jukka K. Hakala
Berit Johansen
Marit W. Anthonsen
Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
Journal of Lipid Research
low density lipoprotein remodeling
inflammation
atherosclerosis
monocytes
oleic acid
author_facet Janne Oestvang
Dominique Bonnefont-Rousselot
Ewa Ninio
Jukka K. Hakala
Berit Johansen
Marit W. Anthonsen
author_sort Janne Oestvang
title Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
title_short Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
title_full Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
title_fullStr Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
title_full_unstemmed Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
title_sort modification of ldl with human secretory phospholipase a2 or sphingomyelinase promotes its arachidonic acid-releasing propensity
publisher Elsevier
series Journal of Lipid Research
issn 0022-2275
publishDate 2004-05-01
description Oxidation and lipolytic remodeling of LDL are believed to stimulate LDL entrapment in the arterial wall, expanding the inflammatory response and promoting atherosclerosis. However, the cellular responses and molecular mechanisms underlying the atherogenic effects of lipolytically modified LDL are incompletely understood. Human THP-1 monocytes were prelabeled with [3H]arachidonic acid (AA) before incubation with LDL or LDL lipolytically modified by secretory PLA2 (sPLA2) or bacterial sphingomyelinase (SMase). LDL elicited rapid and dose-dependent extracellular release of AA in monocytes. Interestingly, LDL modified by sPLA2 or SMase displayed a marked increase in AA mobilization relative to native LDL, and this increase correlated with enhanced activity of cytosolic PLA2 (cPLA2) assayed in vitro as well as increased monocyte tumor necrosis factor-α secretion. The AA liberation was attenuated by inhibitors toward cPLA2 and sPLA2, indicating that both PLA2 enzymes participate in LDL-induced AA release.In conclusion, these results demonstrate that LDL lipolytically modified by sPLA2 or SMase potentiates cellular AA release and cPLA2 activation in human monocytes. From our results, we suggest novel atherogenic properties for LDL modified by sPLA2 and SMase in AA release and signaling, which could contribute to the inflammatory gene expression observed in atherosclerosis.
topic low density lipoprotein remodeling
inflammation
atherosclerosis
monocytes
oleic acid
url http://www.sciencedirect.com/science/article/pii/S0022227520318228
work_keys_str_mv AT janneoestvang modificationofldlwithhumansecretoryphospholipasea2orsphingomyelinasepromotesitsarachidonicacidreleasingpropensity
AT dominiquebonnefontrousselot modificationofldlwithhumansecretoryphospholipasea2orsphingomyelinasepromotesitsarachidonicacidreleasingpropensity
AT ewaninio modificationofldlwithhumansecretoryphospholipasea2orsphingomyelinasepromotesitsarachidonicacidreleasingpropensity
AT jukkakhakala modificationofldlwithhumansecretoryphospholipasea2orsphingomyelinasepromotesitsarachidonicacidreleasingpropensity
AT beritjohansen modificationofldlwithhumansecretoryphospholipasea2orsphingomyelinasepromotesitsarachidonicacidreleasingpropensity
AT maritwanthonsen modificationofldlwithhumansecretoryphospholipasea2orsphingomyelinasepromotesitsarachidonicacidreleasingpropensity
_version_ 1721506865913790464
spelling doaj-01b21776c06f480c92fde7595504a8312021-04-27T04:40:52ZengElsevierJournal of Lipid Research0022-22752004-05-01455831838Modification of LDL with human secretory phospholipase A2 or sphingomyelinase promotes its arachidonic acid-releasing propensityJanne Oestvang0Dominique Bonnefont-Rousselot1Ewa Ninio2Jukka K. Hakala3Berit Johansen4Marit W. Anthonsen5Faculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Laboratoire de Biochimie B, Groupe Hospitalier Pitié-Salpêtrière, and Institut Fédératif Coeur Muscle Vaisseaux, Paris, France; Institut National de la Santé et de la Recherche Médicale U525, Institut Fédératif Coeur Muscle Vaisseaux, and Université Pierre et Marie Curie, Paris, France; Wihuri Research Institute, Helsinki, FinlandFaculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Laboratoire de Biochimie B, Groupe Hospitalier Pitié-Salpêtrière, and Institut Fédératif Coeur Muscle Vaisseaux, Paris, France; Institut National de la Santé et de la Recherche Médicale U525, Institut Fédératif Coeur Muscle Vaisseaux, and Université Pierre et Marie Curie, Paris, France; Wihuri Research Institute, Helsinki, FinlandFaculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Laboratoire de Biochimie B, Groupe Hospitalier Pitié-Salpêtrière, and Institut Fédératif Coeur Muscle Vaisseaux, Paris, France; Institut National de la Santé et de la Recherche Médicale U525, Institut Fédératif Coeur Muscle Vaisseaux, and Université Pierre et Marie Curie, Paris, France; Wihuri Research Institute, Helsinki, FinlandFaculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Laboratoire de Biochimie B, Groupe Hospitalier Pitié-Salpêtrière, and Institut Fédératif Coeur Muscle Vaisseaux, Paris, France; Institut National de la Santé et de la Recherche Médicale U525, Institut Fédératif Coeur Muscle Vaisseaux, and Université Pierre et Marie Curie, Paris, France; Wihuri Research Institute, Helsinki, FinlandFaculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Laboratoire de Biochimie B, Groupe Hospitalier Pitié-Salpêtrière, and Institut Fédératif Coeur Muscle Vaisseaux, Paris, France; Institut National de la Santé et de la Recherche Médicale U525, Institut Fédératif Coeur Muscle Vaisseaux, and Université Pierre et Marie Curie, Paris, France; Wihuri Research Institute, Helsinki, FinlandFaculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Laboratoire de Biochimie B, Groupe Hospitalier Pitié-Salpêtrière, and Institut Fédératif Coeur Muscle Vaisseaux, Paris, France; Institut National de la Santé et de la Recherche Médicale U525, Institut Fédératif Coeur Muscle Vaisseaux, and Université Pierre et Marie Curie, Paris, France; Wihuri Research Institute, Helsinki, FinlandOxidation and lipolytic remodeling of LDL are believed to stimulate LDL entrapment in the arterial wall, expanding the inflammatory response and promoting atherosclerosis. However, the cellular responses and molecular mechanisms underlying the atherogenic effects of lipolytically modified LDL are incompletely understood. Human THP-1 monocytes were prelabeled with [3H]arachidonic acid (AA) before incubation with LDL or LDL lipolytically modified by secretory PLA2 (sPLA2) or bacterial sphingomyelinase (SMase). LDL elicited rapid and dose-dependent extracellular release of AA in monocytes. Interestingly, LDL modified by sPLA2 or SMase displayed a marked increase in AA mobilization relative to native LDL, and this increase correlated with enhanced activity of cytosolic PLA2 (cPLA2) assayed in vitro as well as increased monocyte tumor necrosis factor-α secretion. The AA liberation was attenuated by inhibitors toward cPLA2 and sPLA2, indicating that both PLA2 enzymes participate in LDL-induced AA release.In conclusion, these results demonstrate that LDL lipolytically modified by sPLA2 or SMase potentiates cellular AA release and cPLA2 activation in human monocytes. From our results, we suggest novel atherogenic properties for LDL modified by sPLA2 and SMase in AA release and signaling, which could contribute to the inflammatory gene expression observed in atherosclerosis.http://www.sciencedirect.com/science/article/pii/S0022227520318228low density lipoprotein remodelinginflammationatherosclerosismonocytesoleic acid