On sets of class [1, q + 1, 2q + 1]_2 in PG(3, q)

In this note we prove that a set of class [1, q+1, 2q+1]_2 in PG(3, q) is either a line, or an ovoid, or a (q^2+q+1)-set of type (1, q+1, 2q+1)_2 or a (q+1)^2-set of type (q+1, 2q+1)_2, or a unique, up to projective equivalence, sporadic 19-set of type (1,4,7) in PG(3,3).

Bibliographic Details
Main Authors: Stefano Innamorati, Fulvio Zuanni
Format: Article
Language:English
Published: Accademia Peloritana dei Pericolanti 2018-11-01
Series:Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
Online Access: http://dx.doi.org/10.1478/AAPP.96S2A6