Computing the conjugacy classes and character table of a non-split extension 2<sup>6</sup>·(2<sup>5</sup>:<em>S</em><sub>6</sub>) from a split extension 2<sup>6</sup>:(2<sup>5</sup>:<em>S</em><sub>6</sub>)
In this paper, we will demonstrate how the character table of a sub-maximal subgroup $2^6{:}(2^5{:}S_6)$ of the sporadic simple group $Fi_{22}$ can be used to obtain the conjugacy classes and character table of a non-split extension of the form $2^6{{}^{\cdot}}(2^5{:}S_6)$, which sits maximal in the...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-02-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2020140/fulltext.html |