Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm
The success of Convolutional Neural Networks is highly dependent on the selected architecture and the hyper-parameters. The need for the automatic design of the networks is especially important for complex architectures where the parameter space is so large that trying all possible combinations is c...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9037322/ |