Short-Term Wind-Speed Forecasting Based on Multiscale Mathematical Morphological Decomposition, K-Means Clustering, and Stacked Denoising Autoencoders
Wind energy plays an increasingly important role in economic development. In this study, we propose a hybrid short-term wind-speed forecasting model comprising multiscale mathematical morphological decomposition (MMMD), K-means clustering algorithm, and stacked denoising autoencoder (SDAE) networks....
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9163090/ |