Summary: | Abstract Background Mesenchymal stem cells (MSCs) can be differentiated into an osteoblastic lineage in the presence of growth factors (GFs). Platelet-rich plasma (PRP), which can be easily isolated from whole blood, contains a large amount of GFs, and, therefore, promotes bone growth and regeneration. The main goal of this work was to develop and investigate the effect of a new sandwich-like bone scaffold which combines a nano-calcium sulfate (nCS) disc along with PRP fibrin gel (nCS/PRP) with BMP2-modified MSCs on bone repair and regeneration in rat critical-sized calvarial defects. Methods We evaluated the cytotoxicity, osteogenic differentiation and mineralization effect of PRP extract on BMP2-modified MSCs and constructed a sandwich-like nCS/PRP scaffold (mimicking the nano-calcium matrix of bone and carrying multi GFs in the PRP) containing BMP2-modified MSCs. The capacity of this multifunctional bone regeneration system in promoting bone repair was assessed in vivo in a rat critical-sized (8 mm) calvarial bone defect model. Results We developed an optimized nCS/PRP sandwich-like scaffold. Scanning electron microscopy (SEM) results showed that nCS/PRP are polyporous with an average pore diameter of 70–80 μm and the cells can survive in the nCS/PRP scaffold. PRP extract dramatically stimulated proliferation and differentiation of BMP2-modified MSCs in vitro. Our in vivo results showed that the combination of BMP2-modified MSCs and nCS/PRP scaffold dramatically increased new bone regeneration compared with the groups without PRP and/or BMP2. Conclusions nCS/PRP scaffolds containing BMP2-modified MSCs successfully promotes bone regeneration in critical-sized bone defects. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for critical-sized bone defects.
|