Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$

In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from a Hilbert $C^{\ast}$-module $\mathcal{H}$ to  itself denoted by $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $.  We give some properties relating to some constructions of integral $K$-oper...

Full description

Bibliographic Details
Main Authors: Hatim Labrigui, Samir Kabbaj
Format: Article
Language:English
Published: University of Maragheh 2021-08-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_245093_328f82d1d9d00776e4eca7e437e23d98.pdf
id doaj-0c6a4d172ecb49c480b51d316c6159c0
record_format Article
spelling doaj-0c6a4d172ecb49c480b51d316c6159c02021-10-10T05:42:42ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002021-08-011839110710.22130/scma.2021.140176.874245093Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$Hatim Labrigui0Samir Kabbaj1Department of Mathematics, Faculty of Science, University of Ibn Tofail, B.P. 133, Kenitra, Morocco.Department of Mathematics, Faculty of Science, University of Ibn Tofail, B.P. 133, Kenitra, Morocco.In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from a Hilbert $C^{\ast}$-module $\mathcal{H}$ to  itself denoted by $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $.  We give some properties relating to some constructions of integral $K$-operator frames and to operators preserving  integral $K$-operator frame and we establish some new results.https://scma.maragheh.ac.ir/article_245093_328f82d1d9d00776e4eca7e437e23d98.pdf$k$-framesintegral $k$-operator frames$c^{ast}$-algebrahilbert $mathcal{a}$-module
collection DOAJ
language English
format Article
sources DOAJ
author Hatim Labrigui
Samir Kabbaj
spellingShingle Hatim Labrigui
Samir Kabbaj
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
Sahand Communications in Mathematical Analysis
$k$-frames
integral $k$-operator frames
$c^{ast}$-algebra
hilbert $mathcal{a}$-module
author_facet Hatim Labrigui
Samir Kabbaj
author_sort Hatim Labrigui
title Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
title_short Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
title_full Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
title_fullStr Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
title_full_unstemmed Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
title_sort integral $k$-operator frames for $end_{\mathcal{a}}^{\ast}(\mathcal{h})$
publisher University of Maragheh
series Sahand Communications in Mathematical Analysis
issn 2322-5807
2423-3900
publishDate 2021-08-01
description In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from a Hilbert $C^{\ast}$-module $\mathcal{H}$ to  itself denoted by $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $.  We give some properties relating to some constructions of integral $K$-operator frames and to operators preserving  integral $K$-operator frame and we establish some new results.
topic $k$-frames
integral $k$-operator frames
$c^{ast}$-algebra
hilbert $mathcal{a}$-module
url https://scma.maragheh.ac.ir/article_245093_328f82d1d9d00776e4eca7e437e23d98.pdf
work_keys_str_mv AT hatimlabrigui integralkoperatorframesforendmathcalaastmathcalh
AT samirkabbaj integralkoperatorframesforendmathcalaastmathcalh
_version_ 1716830034825576448