Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from a Hilbert $C^{\ast}$-module $\mathcal{H}$ to itself denoted by $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $. We give some properties relating to some constructions of integral $K$-oper...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2021-08-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_245093_328f82d1d9d00776e4eca7e437e23d98.pdf |
id |
doaj-0c6a4d172ecb49c480b51d316c6159c0 |
---|---|
record_format |
Article |
spelling |
doaj-0c6a4d172ecb49c480b51d316c6159c02021-10-10T05:42:42ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002021-08-011839110710.22130/scma.2021.140176.874245093Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$Hatim Labrigui0Samir Kabbaj1Department of Mathematics, Faculty of Science, University of Ibn Tofail, B.P. 133, Kenitra, Morocco.Department of Mathematics, Faculty of Science, University of Ibn Tofail, B.P. 133, Kenitra, Morocco.In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from a Hilbert $C^{\ast}$-module $\mathcal{H}$ to itself denoted by $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $. We give some properties relating to some constructions of integral $K$-operator frames and to operators preserving integral $K$-operator frame and we establish some new results.https://scma.maragheh.ac.ir/article_245093_328f82d1d9d00776e4eca7e437e23d98.pdf$k$-framesintegral $k$-operator frames$c^{ast}$-algebrahilbert $mathcal{a}$-module |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hatim Labrigui Samir Kabbaj |
spellingShingle |
Hatim Labrigui Samir Kabbaj Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ Sahand Communications in Mathematical Analysis $k$-frames integral $k$-operator frames $c^{ast}$-algebra hilbert $mathcal{a}$-module |
author_facet |
Hatim Labrigui Samir Kabbaj |
author_sort |
Hatim Labrigui |
title |
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ |
title_short |
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ |
title_full |
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ |
title_fullStr |
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ |
title_full_unstemmed |
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ |
title_sort |
integral $k$-operator frames for $end_{\mathcal{a}}^{\ast}(\mathcal{h})$ |
publisher |
University of Maragheh |
series |
Sahand Communications in Mathematical Analysis |
issn |
2322-5807 2423-3900 |
publishDate |
2021-08-01 |
description |
In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from a Hilbert $C^{\ast}$-module $\mathcal{H}$ to itself denoted by $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $. We give some properties relating to some constructions of integral $K$-operator frames and to operators preserving integral $K$-operator frame and we establish some new results. |
topic |
$k$-frames integral $k$-operator frames $c^{ast}$-algebra hilbert $mathcal{a}$-module |
url |
https://scma.maragheh.ac.ir/article_245093_328f82d1d9d00776e4eca7e437e23d98.pdf |
work_keys_str_mv |
AT hatimlabrigui integralkoperatorframesforendmathcalaastmathcalh AT samirkabbaj integralkoperatorframesforendmathcalaastmathcalh |
_version_ |
1716830034825576448 |