Improving Financial Time Series Prediction Accuracy Using Ensemble Empirical Mode Decomposition and Recurrent Neural Networks
Recurrent neural networks have received vast amount of attention in time series prediction due to their flexibility in capturing dependencies on various scales. However, as in most of the classical forecasting methods, its accuracy is strongly tied to the degree of signal complexity. Specifically, s...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9099274/ |