DEEP NO LEARNING APPROACH FOR UNSUPERVISED CHANGE DETECTION IN HYPERSPECTRAL IMAGES

Unsupervised deep transfer-learning based change detection (CD) methods require pre-trained feature extractor that can be used to extract semantic features from the target bi-temporal scene. However, it is difficult to obtain such feature extractors for hyperspectral images. Moreover, it is not triv...

Full description

Bibliographic Details
Main Authors: S. Saha, L. Kondmann, X. X. Zhu
Format: Article
Language:English
Published: Copernicus Publications 2021-06-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2021/311/2021/isprs-annals-V-3-2021-311-2021.pdf