On monotonous separately continuous functions

Let T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space.  The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each  variable (“t” and  “x”)  separately  and  function ƒx(t)  = ƒ(t,x) is  monotonous  on T for  every x ∈ X,  th...

Full description

Bibliographic Details
Main Author: Yaroslav I. Grushka
Format: Article
Language:English
Published: Universitat Politècnica de València 2019-04-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/9817