Absence of Lavrentiev gap for non-autonomous functionals with (p,q)-growth
We consider non-autonomous functionals of the form ℱ(u,Ω)=∫Ωf(x,Du(x))𝑑x{\mathcal{F}(u,\hskip-0.569055pt\Omega)\hskip-0.853583pt=\hskip-0.853583pt\int% _{\Omega}f(x,\hskip-0.569055ptDu(x))\hskip-0.569055pt\,dx}, where u:Ω→ℝN{u\colon\kern-0.711319pt\Omega\hskip-0.569055pt\to\hskip-0.569055pt\mat...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-12-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2016-0198 |