A compactness lemma of Aubin type and its application to degenerate parabolic equations

Let $\Omega\subset \mathbb{R}^{n}$ be a regular domain and $\Phi(s)\in C_{\rm loc}(\mathbb{R})$ be a given function. If $\mathfrak{M}\subset L_2(0,T;W^1_2(\Omega)) \cap L_{\infty}(\Omega\times (0,T))$ is bounded and the set $\{\partial_t\Phi(v)|\,v\in \mathfrak{M}\}$ is bounded in $L_2(0,T;W^{-...

Full description

Bibliographic Details
Main Authors: Anvarbek Meirmanov, Sergey Shmarev
Format: Article
Language:English
Published: Texas State University 2014-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/227/abstr.html