A compactness lemma of Aubin type and its application to degenerate parabolic equations

Let $\Omega\subset \mathbb{R}^{n}$ be a regular domain and $\Phi(s)\in C_{\rm loc}(\mathbb{R})$ be a given function. If $\mathfrak{M}\subset L_2(0,T;W^1_2(\Omega)) \cap L_{\infty}(\Omega\times (0,T))$ is bounded and the set $\{\partial_t\Phi(v)|\,v\in \mathfrak{M}\}$ is bounded in $L_2(0,T;W^{-...

Full description

Bibliographic Details
Main Authors: Anvarbek Meirmanov, Sergey Shmarev
Format: Article
Language:English
Published: Texas State University 2014-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/227/abstr.html
id doaj-1c9c0b3545074d659b4b5e1ff35d6b5b
record_format Article
spelling doaj-1c9c0b3545074d659b4b5e1ff35d6b5b2020-11-25T01:04:22ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912014-10-012014227,113A compactness lemma of Aubin type and its application to degenerate parabolic equationsAnvarbek Meirmanov0Sergey Shmarev1 Belgorod State Univ., Belgorod, Russia Univ. of Oviedo, Spain Let $\Omega\subset \mathbb{R}^{n}$ be a regular domain and $\Phi(s)\in C_{\rm loc}(\mathbb{R})$ be a given function. If $\mathfrak{M}\subset L_2(0,T;W^1_2(\Omega)) \cap L_{\infty}(\Omega\times (0,T))$ is bounded and the set $\{\partial_t\Phi(v)|\,v\in \mathfrak{M}\}$ is bounded in $L_2(0,T;W^{-1}_2(\Omega))$, then there is a sequence $\{v_k\}\in \mathfrak{M}$ such that $v_k\rightharpoonup v \in L^2(0,T;W^1_2(\Omega))$, and $v_k\to v$, $\Phi(v_k)\to \Phi(v)$ a.e. in $\Omega_T=\Omega\times (0,T)$. This assertion is applied to prove solvability of the one-dimensional initial and boundary-value problem for a degenerate parabolic equation arising in the Buckley-Leverett model of two-phase filtration. We prove existence and uniqueness of a weak solution, establish the property of finite speed of propagation and construct a self-similar solution.http://ejde.math.txstate.edu/Volumes/2014/227/abstr.htmlCompactness lemmatwo-phase filtration nonlinear PDEdegenerate parabolic equations
collection DOAJ
language English
format Article
sources DOAJ
author Anvarbek Meirmanov
Sergey Shmarev
spellingShingle Anvarbek Meirmanov
Sergey Shmarev
A compactness lemma of Aubin type and its application to degenerate parabolic equations
Electronic Journal of Differential Equations
Compactness lemma
two-phase filtration
nonlinear PDE
degenerate parabolic equations
author_facet Anvarbek Meirmanov
Sergey Shmarev
author_sort Anvarbek Meirmanov
title A compactness lemma of Aubin type and its application to degenerate parabolic equations
title_short A compactness lemma of Aubin type and its application to degenerate parabolic equations
title_full A compactness lemma of Aubin type and its application to degenerate parabolic equations
title_fullStr A compactness lemma of Aubin type and its application to degenerate parabolic equations
title_full_unstemmed A compactness lemma of Aubin type and its application to degenerate parabolic equations
title_sort compactness lemma of aubin type and its application to degenerate parabolic equations
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2014-10-01
description Let $\Omega\subset \mathbb{R}^{n}$ be a regular domain and $\Phi(s)\in C_{\rm loc}(\mathbb{R})$ be a given function. If $\mathfrak{M}\subset L_2(0,T;W^1_2(\Omega)) \cap L_{\infty}(\Omega\times (0,T))$ is bounded and the set $\{\partial_t\Phi(v)|\,v\in \mathfrak{M}\}$ is bounded in $L_2(0,T;W^{-1}_2(\Omega))$, then there is a sequence $\{v_k\}\in \mathfrak{M}$ such that $v_k\rightharpoonup v \in L^2(0,T;W^1_2(\Omega))$, and $v_k\to v$, $\Phi(v_k)\to \Phi(v)$ a.e. in $\Omega_T=\Omega\times (0,T)$. This assertion is applied to prove solvability of the one-dimensional initial and boundary-value problem for a degenerate parabolic equation arising in the Buckley-Leverett model of two-phase filtration. We prove existence and uniqueness of a weak solution, establish the property of finite speed of propagation and construct a self-similar solution.
topic Compactness lemma
two-phase filtration
nonlinear PDE
degenerate parabolic equations
url http://ejde.math.txstate.edu/Volumes/2014/227/abstr.html
work_keys_str_mv AT anvarbekmeirmanov acompactnesslemmaofaubintypeanditsapplicationtodegenerateparabolicequations
AT sergeyshmarev acompactnesslemmaofaubintypeanditsapplicationtodegenerateparabolicequations
AT anvarbekmeirmanov compactnesslemmaofaubintypeanditsapplicationtodegenerateparabolicequations
AT sergeyshmarev compactnesslemmaofaubintypeanditsapplicationtodegenerateparabolicequations
_version_ 1725198582657581056