LC-UV method to assay raloxifene hydrochloride in rat plasma and its application to a pharmacokinetic study

A specific, precise, and accurate LC-UV method was developed and validated to assay raloxifene hydrochloride in rat plasma. Raloxifene was analyzed after liquid-liquid extraction and quantified by reversed phase liquid chromatography (C18 column) using acetonitrile and ammonium acetate buffer 0.05 M...

Full description

Bibliographic Details
Main Authors: Márcia Camponogara Fontana, João Víctor Laureano, Betielli Forgearini, Paula dos Santos Chaves, Bibiana Verlindo de Araujo, Ruy Carlos Ruver Beck
Format: Article
Language:English
Published: Universidade de São Paulo
Series:Brazilian Journal of Pharmaceutical Sciences
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502019000100538&lng=en&tlng=en
Description
Summary:A specific, precise, and accurate LC-UV method was developed and validated to assay raloxifene hydrochloride in rat plasma. Raloxifene was analyzed after liquid-liquid extraction and quantified by reversed phase liquid chromatography (C18 column) using acetonitrile and ammonium acetate buffer 0.05 M (pH 4.0) as mobile phase at a flow rate of 1 mL.min-1 and UV detection at 287 nm. Retention times of raloxifene and internal standard (dexamethasone) were approximately 11 min and 14 min, respectively. Linearity was checked for a concentration range between 25 ng.mL-1 and 1000 ng.mL-1. Intra- and inter-day precision had relative standard deviation lower than 10% and 15%, respectively. Recovery from plasma was higher than 90%. Accuracy values were 98.21%, 99.70%, and 102.70% for lower, medium, and upper limits of quantification, respectively. Limit of quantification was 25 ng.mL-1. Drug stability was analyzed at room temperature using plasma kept in a freezer at -80 °C for 45 days after processing for 6 h and three freeze-thaw cycles. The advantages of the method developed include stability under different conditions and low limit of quantification. Its applicability was confirmed by the analysis of raloxifene levels in plasma samples in a designed pharmacokinetic study in rats after intravenous administration (5 mg.kg-1).
ISSN:2175-9790