Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input
Abstract A mathematical model describing continuous microbial culture and harvest in a chemostat, incorporating a control strategy and defined by impulsive differential equations, is presented and investigated. Theoretical results indicate that the model has a microbe-extinction periodic solution, w...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-04-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-017-1163-9 |