Elemental intermixing within an ultrathin SrRuO3 electrode layer in epitaxial heterostructure BaTiO3/SrRuO3/SrTiO3

Aberration corrected scanning transmission electron microscopy is used to directly observe atom columns in an epitaxial BaTiO3 thin film deposited on a 3.6 nm-thick SrRuO3 electrode layer above an SrTiO3 (001) substrate. Compositional gradients across the heterointerfaces were examined using electro...

Full description

Bibliographic Details
Main Authors: H. B. Zhang, R. J. Qi, N. F. Ding, R. Huang, L. Sun, C. G. Duan, Craig A. J. Fisher, J. H. Chu, Y. Ikuhara
Format: Article
Language:English
Published: AIP Publishing LLC 2016-01-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4940663
Description
Summary:Aberration corrected scanning transmission electron microscopy is used to directly observe atom columns in an epitaxial BaTiO3 thin film deposited on a 3.6 nm-thick SrRuO3 electrode layer above an SrTiO3 (001) substrate. Compositional gradients across the heterointerfaces were examined using electron energy-loss spectroscopy techniques. It was found that a small amount of Ba and Ti had diffused into the SrRuO3 layer, and that this layer contained a non-negligible concentration of oxygen vacancies. Such point defects are expected to degrade the electrode’s electronic conductivity drastically, resulting in a much longer screening length. This may explain the discrepancy between experimental measurements and theoretical estimates of the ferroelectric critical thickness of a BaTiO3 ferroelectric barrier sandwiched between metallic SrRuO3 electrodes, since theoretical calculations generally assume ideal (stoichiometric) perovskite SrRuO3.
ISSN:2158-3226