Event-Triggered Adaptive Backstepping Control for Strict-Feedback Nonlinear Systems with Zero Dynamics

This paper focuses on the problem of event-triggered control for a class of uncertain nonlinear strict-feedback systems with zero dynamics via backstepping technique. In the design procedure, the adaptive controller and the triggering event are designed at the same time to remove the assumption of t...

Full description

Bibliographic Details
Main Authors: Bo Xu, Xiaoping Liu, Huanqing Wang, Yucheng Zhou
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/7890968
Description
Summary:This paper focuses on the problem of event-triggered control for a class of uncertain nonlinear strict-feedback systems with zero dynamics via backstepping technique. In the design procedure, the adaptive controller and the triggering event are designed at the same time to remove the assumption of the input-to-state stability with respect to the measurement errors. Besides, we propose an assumption to deal with the problem of zero dynamics. Three different event-triggered control strategies are designed, which guarantees that all the closed-loop signals are globally bounded. The effectiveness of the proposed methods is illustrated and compared using simulation examples.
ISSN:1076-2787
1099-0526