A varying dark energy effective speed of sound parameter in the phantom Universe

Abstract We analyse the phenomenological effects of a varying Dark Energy (DE) effective speed of sound parameter, $$c^{2}_{\text {sd}}$$ c sd 2 , on the cosmological perturbations of three phantom DE models. Each of these models induce a particular abrupt future event known as Big Rip (BR), Little...

Full description

Bibliographic Details
Main Authors: Imanol Albarran, Mariam Bouhmadi-López, João Marto
Format: Article
Language:English
Published: SpringerOpen 2021-09-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-021-09546-2
Description
Summary:Abstract We analyse the phenomenological effects of a varying Dark Energy (DE) effective speed of sound parameter, $$c^{2}_{\text {sd}}$$ c sd 2 , on the cosmological perturbations of three phantom DE models. Each of these models induce a particular abrupt future event known as Big Rip (BR), Little Rip (LR), and Little Sibling of the Big Rip (LSBR). In this class of abrupt events, all the bound structures in the Universe would be ripped apart at a finite cosmic time. We compute the evolution of the perturbations, $$f\sigma _{8}$$ f σ 8 growth rate and forecast the current matter power spectrum. We vary the $$c^{2}_{\text {sd}}$$ c sd 2 parameter in the interval [0, 1] and compute the relative deviation with respect $$c^{2}_{\text {sd}}=1$$ c sd 2 = 1 . In addition, we analyse the effect of gravitational potential sign flip that occurs at very large scale factors as compared with the current one.
ISSN:1434-6044
1434-6052