CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity
Microglia, the innate immune cells of the brain, are essential for maintaining homeostasis by their ramified, highly motile processes and for orchestrating the immune response to pathological stimuli. They are implicated in several neurodegenerative diseases like Alzheimer’s and Parkinson’s disease....
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-06-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fimmu.2021.684430/full |
id |
doaj-223319f0eb4e4db0affa979fa379553c |
---|---|
record_format |
Article |
spelling |
doaj-223319f0eb4e4db0affa979fa379553c2021-06-01T09:18:10ZengFrontiers Media S.A.Frontiers in Immunology1664-32242021-06-011210.3389/fimmu.2021.684430684430CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance CapacityVanessa Aires0Vanessa Aires1Vanessa Aires2Claire Coulon-Bainier3Anto Pavlovic4Martin Ebeling5Roland Schmucki6Christophe Schweitzer7Erich Kueng8Simon Gutbier9Eva Harde10Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandDepartment of Neurology, Medical Center – University of Freiburg, Freiburg, GermanyFaculty of Biology, University of Freiburg, Freiburg, GermanyRoche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandRoche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, SwitzerlandMicroglia, the innate immune cells of the brain, are essential for maintaining homeostasis by their ramified, highly motile processes and for orchestrating the immune response to pathological stimuli. They are implicated in several neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. One commonality of these diseases is their strong correlation with aging as the highest risk factor and studying age-related alterations in microglia physiology and associated signaling mechanism is indispensable for a better understanding of age-related pathomechanisms. CD22 has been identified as a modifier of microglia phagocytosis in a recent study, but not much is known about the function of CD22 in microglia. Here we show that CD22 surface levels are upregulated in aged versus adult microglia. Furthermore, in the amyloid mouse model PS2APP, Aβ-containing microglia also exhibit increased CD22 signal. To assess the impact of CD22 blockage on microglia morphology and dynamics, we have established a protocol to image microglia process motility in acutely prepared brain slices from CX3CR1-GFP reporter mice. We observed a significant reduction of microglial ramification and surveillance capacity in brain slices from aged versus adult mice. The age-related decrease in surveillance can be restored by antibody-mediated CD22 blockage in aged mice, whereas surveillance in adult mice is not affected by CD22 inhibition. Moreover to complement the results obtained in mice, we show that human iPSC-derived macrophages exhibit an increased phagocytic capacity upon CD22 blockage. Downstream analysis of antibody-mediated CD22 inhibition revealed an influence on BMP and TGFβ associated gene networks. Our results demonstrate CD22 as a broad age-associated modulator of microglia functionality with potential implications for neurodegenerative disorders.https://www.frontiersin.org/articles/10.3389/fimmu.2021.684430/fullCD22microgliatwo-photon imagingsurveillanceiPSC macrophagesphagocytosis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vanessa Aires Vanessa Aires Vanessa Aires Claire Coulon-Bainier Anto Pavlovic Martin Ebeling Roland Schmucki Christophe Schweitzer Erich Kueng Simon Gutbier Eva Harde |
spellingShingle |
Vanessa Aires Vanessa Aires Vanessa Aires Claire Coulon-Bainier Anto Pavlovic Martin Ebeling Roland Schmucki Christophe Schweitzer Erich Kueng Simon Gutbier Eva Harde CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity Frontiers in Immunology CD22 microglia two-photon imaging surveillance iPSC macrophages phagocytosis |
author_facet |
Vanessa Aires Vanessa Aires Vanessa Aires Claire Coulon-Bainier Anto Pavlovic Martin Ebeling Roland Schmucki Christophe Schweitzer Erich Kueng Simon Gutbier Eva Harde |
author_sort |
Vanessa Aires |
title |
CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity |
title_short |
CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity |
title_full |
CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity |
title_fullStr |
CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity |
title_full_unstemmed |
CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity |
title_sort |
cd22 blockage restores age-related impairments of microglia surveillance capacity |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Immunology |
issn |
1664-3224 |
publishDate |
2021-06-01 |
description |
Microglia, the innate immune cells of the brain, are essential for maintaining homeostasis by their ramified, highly motile processes and for orchestrating the immune response to pathological stimuli. They are implicated in several neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. One commonality of these diseases is their strong correlation with aging as the highest risk factor and studying age-related alterations in microglia physiology and associated signaling mechanism is indispensable for a better understanding of age-related pathomechanisms. CD22 has been identified as a modifier of microglia phagocytosis in a recent study, but not much is known about the function of CD22 in microglia. Here we show that CD22 surface levels are upregulated in aged versus adult microglia. Furthermore, in the amyloid mouse model PS2APP, Aβ-containing microglia also exhibit increased CD22 signal. To assess the impact of CD22 blockage on microglia morphology and dynamics, we have established a protocol to image microglia process motility in acutely prepared brain slices from CX3CR1-GFP reporter mice. We observed a significant reduction of microglial ramification and surveillance capacity in brain slices from aged versus adult mice. The age-related decrease in surveillance can be restored by antibody-mediated CD22 blockage in aged mice, whereas surveillance in adult mice is not affected by CD22 inhibition. Moreover to complement the results obtained in mice, we show that human iPSC-derived macrophages exhibit an increased phagocytic capacity upon CD22 blockage. Downstream analysis of antibody-mediated CD22 inhibition revealed an influence on BMP and TGFβ associated gene networks. Our results demonstrate CD22 as a broad age-associated modulator of microglia functionality with potential implications for neurodegenerative disorders. |
topic |
CD22 microglia two-photon imaging surveillance iPSC macrophages phagocytosis |
url |
https://www.frontiersin.org/articles/10.3389/fimmu.2021.684430/full |
work_keys_str_mv |
AT vanessaaires cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT vanessaaires cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT vanessaaires cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT clairecoulonbainier cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT antopavlovic cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT martinebeling cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT rolandschmucki cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT christopheschweitzer cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT erichkueng cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT simongutbier cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity AT evaharde cd22blockagerestoresagerelatedimpairmentsofmicrogliasurveillancecapacity |
_version_ |
1721410896479125504 |