Influence of Fluid Properties on Intensity of Hydrodynamic Cavitation and Deactivation of <i>Salmonella typhimurium</i>
In this study, three microfluidic devices with different geometries are fabricated on silicon and are bonded to glass to withstand high-pressure fluid flows in order to observe bacteria deactivation effects of micro cavitating flows. The general geometry of the devices was a micro orifice with macro...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Processes |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9717/8/3/326 |