Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean

Abstract In the article, we prove that λ1=1/2+[(2+log(1+2))/2]1/ν−1/2 $\lambda _{1}=1/2+\sqrt{ [ (\sqrt{2}+ \log (1+\sqrt{2}) )/2 ]^{1/\nu }-1}/2$, μ1=1/2+6ν/(12ν) $\mu _{1}=1/2+\sqrt{6 \nu }/(12\nu )$, λ2=1/2+[(π+2)/4]1/ν−1/2 $\lambda _{2}=1/2+\sqrt{ [(\pi +2)/4 ] ^{1/\nu }-1}/2$ and μ2=1/2+3ν/(6ν)...

Full description

Bibliographic Details
Main Authors: Wei-Mao Qian, Zai-Yin He, Hong-Wei Zhang, Yu-Ming Chu
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-2124-5