Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
Abstract In the article, we prove that λ1=1/2+[(2+log(1+2))/2]1/ν−1/2 $\lambda _{1}=1/2+\sqrt{ [ (\sqrt{2}+ \log (1+\sqrt{2}) )/2 ]^{1/\nu }-1}/2$, μ1=1/2+6ν/(12ν) $\mu _{1}=1/2+\sqrt{6 \nu }/(12\nu )$, λ2=1/2+[(π+2)/4]1/ν−1/2 $\lambda _{2}=1/2+\sqrt{ [(\pi +2)/4 ] ^{1/\nu }-1}/2$ and μ2=1/2+3ν/(6ν)...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-06-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-2124-5 |