Privacy-Preserving Weighted Federated Learning Within the Secret Sharing Framework
This paper studies privacy-preserving weighted federated learning within the secret sharing framework, where individual private data is split into random shares which are distributed among a set of pre-defined computing servers. The contribution of this paper mainly comprises the following four-fold...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9244122/ |