>On the generalized Ramanujan-Nagell equation $ x^2+(2k-1)^y = k^z $ with $ k\equiv 3 $ (mod 4)
Let $ k $ be a fixed positive integer with $ k > 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. Thi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-07-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.2021615?viewType=HTML |