Correlated inter-domain motions in adenylate kinase.

Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape i...

Full description

Bibliographic Details
Main Authors: Santiago Esteban-Martín, Robert Bryn Fenwick, Jörgen Ådén, Benjamin Cossins, Carlos W Bertoncini, Victor Guallar, Magnus Wolf-Watz, Xavier Salvatella
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-07-01
Series:PLoS Computational Biology
Online Access:http://europepmc.org/articles/PMC4117416?pdf=render
Description
Summary:Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.
ISSN:1553-734X
1553-7358