Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.

Similar to stem cells, naïve T cells undergo asymmetric division following activation. While asymmetric division of T cells has been shown to be an important mechanism for the generation of lymphocyte fate diversity during immune responses, key factors that influence whether T cells will undergo sym...

Full description

Bibliographic Details
Main Authors: Hong-Ryul Jung, Kwang Hoon Song, John T Chang, Junsang Doh
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3954838?pdf=render
id doaj-32142fbff3f1489b8ca27a65547153bc
record_format Article
spelling doaj-32142fbff3f1489b8ca27a65547153bc2020-11-25T00:27:02ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0193e9192610.1371/journal.pone.0091926Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.Hong-Ryul JungKwang Hoon SongJohn T ChangJunsang DohSimilar to stem cells, naïve T cells undergo asymmetric division following activation. While asymmetric division of T cells has been shown to be an important mechanism for the generation of lymphocyte fate diversity during immune responses, key factors that influence whether T cells will undergo symmetric or asymmetric divisions are not completely understood. Here, we utilized immunological synapse arrays (ISAs) to begin to dissect mechanisms of asymmetric T lymphocyte division. ISAs are protein micropatterned surfaces composed of two segregated regions, activation sites and adhesion fields. Activation sites are small spots presenting activation signals such as anti-CD3 and anti-CD28, and adhesion fields are the remaining regions surrounding activation sites immobilized with interintercel adhesion molecule 1 (ICAM-1). By varying the size and the distance between the activation sites and measuring the incidence of asymmetric cell divisions, we found that the distance between activation sites is an important regulator of asymmetric division. Further analysis revealed that more symmetric divisions occurred when two nascent daughter cells stably interacted with two distinct activation sites throughout and following cytokinesis. In contrast, more asymmetric divisions occurred when only one daughter cell remained anchored on an activation site while the other daughter became motile and moved away following cytokinesis. Together, these results indicate that TCR signaling events during cytokinesis may repolarize key molecules for asymmetric partitioning, suggesting the possibility that the density of antigen presenting cells that interact with T cells as they undergo cytokinesis may be a critical factor regulating asymmetric division in T cells.http://europepmc.org/articles/PMC3954838?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Hong-Ryul Jung
Kwang Hoon Song
John T Chang
Junsang Doh
spellingShingle Hong-Ryul Jung
Kwang Hoon Song
John T Chang
Junsang Doh
Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.
PLoS ONE
author_facet Hong-Ryul Jung
Kwang Hoon Song
John T Chang
Junsang Doh
author_sort Hong-Ryul Jung
title Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.
title_short Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.
title_full Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.
title_fullStr Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.
title_full_unstemmed Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays.
title_sort geometrically controlled asymmetric division of cd4+ t cells studied by immunological synapse arrays.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description Similar to stem cells, naïve T cells undergo asymmetric division following activation. While asymmetric division of T cells has been shown to be an important mechanism for the generation of lymphocyte fate diversity during immune responses, key factors that influence whether T cells will undergo symmetric or asymmetric divisions are not completely understood. Here, we utilized immunological synapse arrays (ISAs) to begin to dissect mechanisms of asymmetric T lymphocyte division. ISAs are protein micropatterned surfaces composed of two segregated regions, activation sites and adhesion fields. Activation sites are small spots presenting activation signals such as anti-CD3 and anti-CD28, and adhesion fields are the remaining regions surrounding activation sites immobilized with interintercel adhesion molecule 1 (ICAM-1). By varying the size and the distance between the activation sites and measuring the incidence of asymmetric cell divisions, we found that the distance between activation sites is an important regulator of asymmetric division. Further analysis revealed that more symmetric divisions occurred when two nascent daughter cells stably interacted with two distinct activation sites throughout and following cytokinesis. In contrast, more asymmetric divisions occurred when only one daughter cell remained anchored on an activation site while the other daughter became motile and moved away following cytokinesis. Together, these results indicate that TCR signaling events during cytokinesis may repolarize key molecules for asymmetric partitioning, suggesting the possibility that the density of antigen presenting cells that interact with T cells as they undergo cytokinesis may be a critical factor regulating asymmetric division in T cells.
url http://europepmc.org/articles/PMC3954838?pdf=render
work_keys_str_mv AT hongryuljung geometricallycontrolledasymmetricdivisionofcd4tcellsstudiedbyimmunologicalsynapsearrays
AT kwanghoonsong geometricallycontrolledasymmetricdivisionofcd4tcellsstudiedbyimmunologicalsynapsearrays
AT johntchang geometricallycontrolledasymmetricdivisionofcd4tcellsstudiedbyimmunologicalsynapsearrays
AT junsangdoh geometricallycontrolledasymmetricdivisionofcd4tcellsstudiedbyimmunologicalsynapsearrays
_version_ 1725341388952829952