Bearing Fault Diagnosis Using a Novel Classifier Ensemble Based on Lifting Wavelet Packet Transforms and Sample Entropy
In order to improve the fault detection accuracy for rolling bearings, an automated fault diagnosis system is presented based on lifting wavelet packet transform (LWPT), sample entropy (SampEn), and classifier ensemble. Bearing vibration signals are firstly decomposed into different frequency subban...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2016/4805383 |