On generalizations of classical primary submodules over commutative rings
Let $ \phi:{\mathcal{S}}(M) \rightarrow {\mathcal{S}}(M) \cup \{\emptyset\} $ be a function where $ {\mathcal{S}}(M) $ is the set of all submodules of R-module M. A proper submodule N of M is called a ϕ-classical primary submodule, if for each m ∊ M and a, b ∊ R with abm ∊ N-ϕ(N), then am ∊ N or bnm...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2018-01-01
|
Series: | Cogent Mathematics & Statistics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/25742558.2018.1458556 |