On generalizations of classical primary submodules over commutative rings

Let $ \phi:{\mathcal{S}}(M) \rightarrow {\mathcal{S}}(M) \cup \{\emptyset\} $ be a function where $ {\mathcal{S}}(M) $ is the set of all submodules of R-module M. A proper submodule N of M is called a ϕ-classical primary submodule, if for each m ∊ M and a, b ∊ R with abm ∊ N-ϕ(N), then am ∊ N or bnm...

Full description

Bibliographic Details
Main Authors: P. Yiarayong, M. 
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Cogent Mathematics & Statistics
Subjects:
Online Access:http://dx.doi.org/10.1080/25742558.2018.1458556