Bearing Fault Diagnosis with Kernel Sparse Representation Classification Based on Adaptive Local Iterative Filtering-Enhanced Multiscale Entropy Features
To improve the bearings diagnosis accuracy considering multiple fault types with small samples, a new approach that combined adaptive local iterative filtering (ALIF), multiscale entropy features, and kernel sparse representation classification (KSRC) is put forward in this paper. ALIF is used to ad...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/7905674 |