An Improving Majority Weighted Minority Oversampling Technique for Imbalanced Classification Problem
Minority oversampling techniques have played a pivotal role in the field of imbalanced learning. While traditional oversampling algorithms can cause problems such as intra-class imbalance of samples, ignoring important information of boundary samples, and high similarity between new and old samples....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9311147/ |