Deep Learning for Efficient and Optimal Motion Planning for AUVs with Disturbances
We use the recent advances in Deep Learning to solve an underwater motion planning problem by making use of optimal control tools—namely, we propose using the Deep Galerkin Method (DGM) to approximate the Hamilton–Jacobi–Bellman PDE that can be used to solve continuous time and state optimal control...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/15/5011 |