Non-microRNA binding competitively inhibits LIN28 regulation

Summary: RNA binding protein (RBP) expression is finite. For RBPs that are vastly outnumbered by their potential target sites, a simple competition for binding can set the magnitude of post-transcriptional control. Here, we show that LIN28, best known for its direct regulation of let-7 miRNA biogene...

Full description

Bibliographic Details
Main Authors: Frederick E. Tan, Shashank Sathe, Emily C. Wheeler, Gene W. Yeo
Format: Article
Language:English
Published: Elsevier 2021-08-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721009475
Description
Summary:Summary: RNA binding protein (RBP) expression is finite. For RBPs that are vastly outnumbered by their potential target sites, a simple competition for binding can set the magnitude of post-transcriptional control. Here, we show that LIN28, best known for its direct regulation of let-7 miRNA biogenesis, is also indirectly regulated by its widespread binding of non-miRNA transcripts. Approximately 99% of LIN28 binding sites are found on non-miRNA transcripts, like protein coding and ribosomal RNAs. These sites are bound specifically and strongly, but they do not appear to mediate direct post-transcriptional regulation. Instead, non-miRNA sites act to sequester LIN28 protein and effectively change its functional availability, thus impeding the regulation of let-7 in cells. Together, these data show that the binding properties of the transcriptome broadly influence the ability of an RBP to mediate changes in RNA metabolism and gene expression.
ISSN:2211-1247