A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.

Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteri...

Full description

Bibliographic Details
Main Authors: Shauna D O'Donovan, Michael Lenz, Roel G Vink, Nadia J T Roumans, Theo M C M de Kok, Edwin C M Mariman, Ralf L M Peeters, Natal A W van Riel, Marleen A van Baak, Ilja C W Arts
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-10-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1007400
id doaj-410efcecc5b248518df708c5720dcd97
record_format Article
spelling doaj-410efcecc5b248518df708c5720dcd972021-04-21T15:07:53ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582019-10-011510e100740010.1371/journal.pcbi.1007400A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.Shauna D O'DonovanMichael LenzRoel G VinkNadia J T RoumansTheo M C M de KokEdwin C M MarimanRalf L M PeetersNatal A W van RielMarleen A van BaakIlja C W ArtsGiven the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model's delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction.https://doi.org/10.1371/journal.pcbi.1007400
collection DOAJ
language English
format Article
sources DOAJ
author Shauna D O'Donovan
Michael Lenz
Roel G Vink
Nadia J T Roumans
Theo M C M de Kok
Edwin C M Mariman
Ralf L M Peeters
Natal A W van Riel
Marleen A van Baak
Ilja C W Arts
spellingShingle Shauna D O'Donovan
Michael Lenz
Roel G Vink
Nadia J T Roumans
Theo M C M de Kok
Edwin C M Mariman
Ralf L M Peeters
Natal A W van Riel
Marleen A van Baak
Ilja C W Arts
A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
PLoS Computational Biology
author_facet Shauna D O'Donovan
Michael Lenz
Roel G Vink
Nadia J T Roumans
Theo M C M de Kok
Edwin C M Mariman
Ralf L M Peeters
Natal A W van Riel
Marleen A van Baak
Ilja C W Arts
author_sort Shauna D O'Donovan
title A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
title_short A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
title_full A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
title_fullStr A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
title_full_unstemmed A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
title_sort computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data.
publisher Public Library of Science (PLoS)
series PLoS Computational Biology
issn 1553-734X
1553-7358
publishDate 2019-10-01
description Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model's delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction.
url https://doi.org/10.1371/journal.pcbi.1007400
work_keys_str_mv AT shaunadodonovan acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT michaellenz acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT roelgvink acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT nadiajtroumans acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT theomcmdekok acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT edwincmmariman acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT ralflmpeeters acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT natalawvanriel acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT marleenavanbaak acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT iljacwarts acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT shaunadodonovan computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT michaellenz computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT roelgvink computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT nadiajtroumans computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT theomcmdekok computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT edwincmmariman computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT ralflmpeeters computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT natalawvanriel computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT marleenavanbaak computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT iljacwarts computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
_version_ 1714667889685954560