IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation

Abstract The IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains el...

Full description

Bibliographic Details
Main Authors: Wida Razawy, Celso H. Alves, Marijke Koedam, Patrick S. Asmawidjaja, Adriana M. C. Mus, Mohamed Oukka, Pieter J. M. Leenen, Jenny A. Visser, Bram C. J. van der Eerden, Erik Lubberts
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-89625-2
id doaj-4178bd5619304f8498fcb69ed29bb6bc
record_format Article
spelling doaj-4178bd5619304f8498fcb69ed29bb6bc2021-05-16T11:26:13ZengNature Publishing GroupScientific Reports2045-23222021-05-0111111010.1038/s41598-021-89625-2IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formationWida Razawy0Celso H. Alves1Marijke Koedam2Patrick S. Asmawidjaja3Adriana M. C. Mus4Mohamed Oukka5Pieter J. M. Leenen6Jenny A. Visser7Bram C. J. van der Eerden8Erik Lubberts9Department of Rheumatology, Erasmus MC, University Medical Center RotterdamDepartment of Rheumatology, Erasmus MC, University Medical Center RotterdamDepartment of Internal Medicine, Erasmus MC, University Medical Center RotterdamDepartment of Rheumatology, Erasmus MC, University Medical Center RotterdamDepartment of Rheumatology, Erasmus MC, University Medical Center RotterdamDepartment of Pediatrics, Seattle Children’s Research Institute, Center for Immunity and ImmunotherapiesDepartment of Immunology, Erasmus MC, University Medical Center RotterdamDepartment of Internal Medicine, Erasmus MC, University Medical Center RotterdamDepartment of Internal Medicine, Erasmus MC, University Medical Center RotterdamDepartment of Rheumatology, Erasmus MC, University Medical Center RotterdamAbstract The IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.https://doi.org/10.1038/s41598-021-89625-2
collection DOAJ
language English
format Article
sources DOAJ
author Wida Razawy
Celso H. Alves
Marijke Koedam
Patrick S. Asmawidjaja
Adriana M. C. Mus
Mohamed Oukka
Pieter J. M. Leenen
Jenny A. Visser
Bram C. J. van der Eerden
Erik Lubberts
spellingShingle Wida Razawy
Celso H. Alves
Marijke Koedam
Patrick S. Asmawidjaja
Adriana M. C. Mus
Mohamed Oukka
Pieter J. M. Leenen
Jenny A. Visser
Bram C. J. van der Eerden
Erik Lubberts
IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
Scientific Reports
author_facet Wida Razawy
Celso H. Alves
Marijke Koedam
Patrick S. Asmawidjaja
Adriana M. C. Mus
Mohamed Oukka
Pieter J. M. Leenen
Jenny A. Visser
Bram C. J. van der Eerden
Erik Lubberts
author_sort Wida Razawy
title IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
title_short IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
title_full IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
title_fullStr IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
title_full_unstemmed IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
title_sort il-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2021-05-01
description Abstract The IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.
url https://doi.org/10.1038/s41598-021-89625-2
work_keys_str_mv AT widarazawy il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT celsohalves il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT marijkekoedam il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT patricksasmawidjaja il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT adrianamcmus il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT mohamedoukka il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT pieterjmleenen il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT jennyavisser il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT bramcjvandereerden il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
AT eriklubberts il23receptordeficiencyresultsinlowerbonemassviaindirectregulationofboneformation
_version_ 1721439464904982528