The dsRBP and Inactive Editor ADR-1 Utilizes dsRNA Binding to Regulate A-to-I RNA Editing across the C. elegans Transcriptome

Inadequate adenosine-to-inosine editing of noncoding regions occurs in disease but is often uncorrelated with ADAR levels, underscoring the need to study deaminase-independent control of editing. C. elegans have two ADAR proteins, ADR-2 and the theoretically catalytically inactive ADR-1. Using high-...

Full description

Bibliographic Details
Main Authors: Michael C. Washburn, Boyko Kakaradov, Balaji Sundararaman, Emily Wheeler, Shawn Hoon, Gene W. Yeo, Heather A. Hundley
Format: Article
Language:English
Published: Elsevier 2014-02-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S221112471400028X
Description
Summary:Inadequate adenosine-to-inosine editing of noncoding regions occurs in disease but is often uncorrelated with ADAR levels, underscoring the need to study deaminase-independent control of editing. C. elegans have two ADAR proteins, ADR-2 and the theoretically catalytically inactive ADR-1. Using high-throughput RNA sequencing of wild-type and adr mutant worms, we expand the repertoire of C. elegans edited transcripts over 5-fold and confirm that ADR-2 is the only active deaminase in vivo. Despite lacking deaminase function, ADR-1 affects editing of over 60 adenosines within the 3′ UTRs of 16 different mRNAs. Furthermore, ADR-1 interacts directly with ADR-2 substrates, even in the absence of ADR-2, and mutations within its double-stranded RNA (dsRNA) binding domains abolish both binding and editing regulation. We conclude that ADR-1 acts as a major regulator of editing by binding ADR-2 substrates in vivo. These results raise the possibility that other dsRNA binding proteins, including the inactive human ADARs, regulate RNA editing through deaminase-independent mechanisms.
ISSN:2211-1247