Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum

The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, an...

Full description

Bibliographic Details
Main Authors: Kallol Bera, Aron Kamajaya, Amol V. Shivange, Anand K. Muthusamy, Aaron L. Nichols, Philip M. Borden, Stephen Grant, Janice Jeon, Elaine Lin, Ishak Bishara, Theodore M. Chin, Bruce N. Cohen, Charlene H. Kim, Elizabeth K. Unger, Lin Tian, Jonathan S. Marvin, Loren L. Looger, Henry A. Lester
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-11-01
Series:Frontiers in Cellular Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fncel.2019.00499/full
id doaj-4397d649b8754ebaa97c121f59eaa73b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Kallol Bera
Aron Kamajaya
Amol V. Shivange
Anand K. Muthusamy
Anand K. Muthusamy
Aaron L. Nichols
Aaron L. Nichols
Philip M. Borden
Stephen Grant
Janice Jeon
Elaine Lin
Ishak Bishara
Theodore M. Chin
Bruce N. Cohen
Charlene H. Kim
Elizabeth K. Unger
Lin Tian
Jonathan S. Marvin
Loren L. Looger
Henry A. Lester
spellingShingle Kallol Bera
Aron Kamajaya
Amol V. Shivange
Anand K. Muthusamy
Anand K. Muthusamy
Aaron L. Nichols
Aaron L. Nichols
Philip M. Borden
Stephen Grant
Janice Jeon
Elaine Lin
Ishak Bishara
Theodore M. Chin
Bruce N. Cohen
Charlene H. Kim
Elizabeth K. Unger
Lin Tian
Jonathan S. Marvin
Loren L. Looger
Henry A. Lester
Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum
Frontiers in Cellular Neuroscience
antidepressants
organelles
green fluorescent protein
protein engineering and design
periplasmic binding proteins (PBPs)
inside-out pharmacology
author_facet Kallol Bera
Aron Kamajaya
Amol V. Shivange
Anand K. Muthusamy
Anand K. Muthusamy
Aaron L. Nichols
Aaron L. Nichols
Philip M. Borden
Stephen Grant
Janice Jeon
Elaine Lin
Ishak Bishara
Theodore M. Chin
Bruce N. Cohen
Charlene H. Kim
Elizabeth K. Unger
Lin Tian
Jonathan S. Marvin
Loren L. Looger
Henry A. Lester
author_sort Kallol Bera
title Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum
title_short Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum
title_full Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum
title_fullStr Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum
title_full_unstemmed Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum
title_sort biosensors show the pharmacokinetics of s-ketamine in the endoplasmic reticulum
publisher Frontiers Media S.A.
series Frontiers in Cellular Neuroscience
issn 1662-5102
publishDate 2019-11-01
description The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/μM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 μM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.
topic antidepressants
organelles
green fluorescent protein
protein engineering and design
periplasmic binding proteins (PBPs)
inside-out pharmacology
url https://www.frontiersin.org/article/10.3389/fncel.2019.00499/full
work_keys_str_mv AT kallolbera biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT aronkamajaya biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT amolvshivange biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT anandkmuthusamy biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT anandkmuthusamy biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT aaronlnichols biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT aaronlnichols biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT philipmborden biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT stephengrant biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT janicejeon biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT elainelin biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT ishakbishara biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT theodoremchin biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT brucencohen biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT charlenehkim biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT elizabethkunger biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT lintian biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT jonathansmarvin biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT lorenllooger biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
AT henryalester biosensorsshowthepharmacokineticsofsketamineintheendoplasmicreticulum
_version_ 1725113784982306816
spelling doaj-4397d649b8754ebaa97c121f59eaa73b2020-11-25T01:25:27ZengFrontiers Media S.A.Frontiers in Cellular Neuroscience1662-51022019-11-011310.3389/fncel.2019.00499492298Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic ReticulumKallol Bera0Aron Kamajaya1Amol V. Shivange2Anand K. Muthusamy3Anand K. Muthusamy4Aaron L. Nichols5Aaron L. Nichols6Philip M. Borden7Stephen Grant8Janice Jeon9Elaine Lin10Ishak Bishara11Theodore M. Chin12Bruce N. Cohen13Charlene H. Kim14Elizabeth K. Unger15Lin Tian16Jonathan S. Marvin17Loren L. Looger18Henry A. Lester19Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United StatesDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesDepartment of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United StatesDepartment of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United StatesDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United StatesThe target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/μM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 μM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.https://www.frontiersin.org/article/10.3389/fncel.2019.00499/fullantidepressantsorganellesgreen fluorescent proteinprotein engineering and designperiplasmic binding proteins (PBPs)inside-out pharmacology