Inkjet-Printed Top-Gate Thin-Film Transistors Based on InGaSnO Semiconductor Layer with Improved Etching Resistance

Inkjet-printed top-gate metal oxide (MO) thin-film transistors (TFTs) with InGaSnO semiconductor layer and carbon-free aqueous gate dielectric ink are demonstrated. It is found that the InGaO semiconductor layer without Sn doping is seriously damaged after printing aqueous gate dielectric ink onto i...

Full description

Bibliographic Details
Main Authors: Siting Chen, Yuzhi Li, Yilong Lin, Penghui He, Teng Long, Caihao Deng, Zhuo Chen, Geshuang Chen, Hong Tao, Linfeng Lan, Junbiao Peng
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/4/425
Description
Summary:Inkjet-printed top-gate metal oxide (MO) thin-film transistors (TFTs) with InGaSnO semiconductor layer and carbon-free aqueous gate dielectric ink are demonstrated. It is found that the InGaO semiconductor layer without Sn doping is seriously damaged after printing aqueous gate dielectric ink onto it. By doping Sn into InGaO, the acid resistance is enhanced. As a result, the printed InGaSnO semiconductor layer is almost not affected during printing the following gate dielectric layer. The TFTs based on the InGaSnO semiconductor layer exhibit higher mobility, less hysteresis, and better stability compared to those based on InGaO semiconductor layer. To the best of our knowledge, it is for the first time to investigate the interface chemical corrosivity of inkjet-printed MO-TFTs. It paves a way to overcome the solvent etching problems for the printed TFTs.
ISSN:2079-6412