Periodic orbits and the global attractor for delayed monotone negative feedback

We study the delay differential equation $\dot x(t)=-\mu x(t)+f(x(t-1))$ with $\mu\ge 0$ and $C^1$-smooth real functions $f$ satisfying $f(0)=0$ and $f'<0$. For a set of $\mu$ and $f$, we determine the number of periodic orbits, and describe the structure of the global attractor as the union...

Full description

Bibliographic Details
Main Author: Tibor Krisztin
Format: Article
Language:English
Published: University of Szeged 2000-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=76