A new branched proximity hybridization assay for the quantification of nanoscale protein-protein proximity.

Membrane proteins are organized in nanoscale compartments. Their reorganization plays a crucial role in receptor activation and cell signaling. To monitor the organization and reorganization of membrane proteins, we developed a new branched proximity hybridization assay (bPHA) allowing better quanti...

Full description

Bibliographic Details
Main Authors: Shuangshuang Zheng, Melanie Sieder, Michael Mitterer, Michael Reth, Marco Cavallari, Jianying Yang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-12-01
Series:PLoS Biology
Online Access:https://doi.org/10.1371/journal.pbio.3000569
Description
Summary:Membrane proteins are organized in nanoscale compartments. Their reorganization plays a crucial role in receptor activation and cell signaling. To monitor the organization and reorganization of membrane proteins, we developed a new branched proximity hybridization assay (bPHA) allowing better quantification of the nanoscale protein-protein proximity. In this assay, oligo-coupled binding probes, such as aptamer, nanobody, and antibodies, are used to translate the proximity of target proteins to the proximity of oligos. The closely positioned oligos then serve as a template for a maximum of 400-fold branched DNA (bDNA) signal amplification. The amplified bPHA signal is recorded by flow cytometer, thus enabling proximity studies with high throughput, multiplexing, and single-cell resolution. To demonstrate the potential of the bPHA method, we measured the reorganization of the immunoglobulin M (IgM)- and immunoglobulin D (IgD)-class B cell antigen receptor (BCR) on the plasma membrane and the recruitment of spleen tyrosine kinase (Syk) to the BCR upon B lymphocyte activation.
ISSN:1544-9173
1545-7885