Summary: | Summary: Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane. : PknB controls growth and peptidoglycan biosynthesis in Mycobacterium tuberculosis. Turapov et al. show that CwlM, a major PknB substrate, is produced in two forms: a non-phosphorylated membrane-associated CwlM and a PknB-phosphorylated cytoplasmic CwlM. The phosphorylated CwlM binds FhaA, a fork head-associated domain protein, while non-phosphorylated CwlM interacts with MurJ (MviN), a proposed lipid II flippase. Keywords: Mycobacterium tuberculosis, serine/threonine protein kinase, protein kinase B, phosphoproteomics, peptidoglycan, CwlM, MurJ, cellular localization
|