Sharper estimates for the eigenvalues of the Dirichlet fractional Laplacian on planar domains

In this article, we study the eigenvalues of the Dirichlet fractional Laplacian operator $(-\Delta)^{\alpha/2}$, $0<\alpha<1$, restricted to a bounded planar domain $\Omega\subset \mathbb{R}^2$. We establish new sharper lower bounds in the sense of the Weyl law for the of sums of eigenvalu...

Full description

Bibliographic Details
Main Authors: Selma Yildirim, Turkay Yolcu
Format: Article
Language:English
Published: Texas State University 2018-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/165/abstr.html