Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis

Background/Aims: Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are benefici...

Full description

Bibliographic Details
Main Authors: Petra Hundehege, Juncal Fernandez-Orth, Pia Römer, Tobias Ruck, Thomas Müntefering, Susann Eichler, Manuela Cerina, Lisa Epping, Sarah Albrecht, Amélie F. Menke, Katharina Birkner, Kerstin Göbel, Thomas Budde, Frauke Zipp, Heinz Wiendl, Ali Gorji, Stefan Bittner, Sven G. Meuth
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2018-11-01
Series:Neurosignals
Subjects:
Online Access:https://www.karger.com/Article/FullText/495425
id doaj-51ed4769974e495d9c31602ef20bb7a2
record_format Article
spelling doaj-51ed4769974e495d9c31602ef20bb7a22020-11-25T03:53:23ZengCell Physiol Biochem Press GmbH & Co KGNeurosignals1424-862X1424-86382018-11-01261779310.1159/000495425495425Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple SclerosisPetra HundehegeJuncal Fernandez-OrthPia RömerTobias RuckThomas MünteferingSusann EichlerManuela CerinaLisa EppingSarah AlbrechtAmélie F. MenkeKatharina BirknerKerstin GöbelThomas BuddeFrauke ZippHeinz WiendlAli GorjiStefan BittnerSven G. MeuthBackground/Aims: Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. Methods: We tested the impact of pregabalin in a mouse model of MS (experimental autoimmune encephalomyelitis, EAE) and performed histological and immunological evaluations as well as intravital two-photon-microscopy of brainstem EAE lesions. Results: Both prophylactic and therapeutic treatments ameliorated the clinical symptoms of EAE and reduced immune cell infiltration into the CNS. On neuronal level, pregabalin reduced long-term potentiation in hippocampal brain slices indicating an impact on mechanisms of learning and memory. In contrast, T cells, microglia and brain endothelial cells were unaffected by pregabalin. However, we found a direct impact of pregabalin on neurons during CNS inflammation as it reversed the pathological elevation of neuronal intracellular Ca2+ levels in EAE lesions. Conclusion: The presented data suggest that pregabalin primarily acts on neuronal Ca2+ channel trafficking thereby reducing Ca2+-mediated cytotoxicity and neuronal damage in an animal model of MS. Future clinical trials need to assess the benefit for neuronal survival by expanding the indication for pregabalin administration to MS patients in further disease phases.https://www.karger.com/Article/FullText/495425Multiple sclerosisPregabalinExperimental autoimmune encephalomyelitisNeuroprotection
collection DOAJ
language English
format Article
sources DOAJ
author Petra Hundehege
Juncal Fernandez-Orth
Pia Römer
Tobias Ruck
Thomas Müntefering
Susann Eichler
Manuela Cerina
Lisa Epping
Sarah Albrecht
Amélie F. Menke
Katharina Birkner
Kerstin Göbel
Thomas Budde
Frauke Zipp
Heinz Wiendl
Ali Gorji
Stefan Bittner
Sven G. Meuth
spellingShingle Petra Hundehege
Juncal Fernandez-Orth
Pia Römer
Tobias Ruck
Thomas Müntefering
Susann Eichler
Manuela Cerina
Lisa Epping
Sarah Albrecht
Amélie F. Menke
Katharina Birkner
Kerstin Göbel
Thomas Budde
Frauke Zipp
Heinz Wiendl
Ali Gorji
Stefan Bittner
Sven G. Meuth
Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
Neurosignals
Multiple sclerosis
Pregabalin
Experimental autoimmune encephalomyelitis
Neuroprotection
author_facet Petra Hundehege
Juncal Fernandez-Orth
Pia Römer
Tobias Ruck
Thomas Müntefering
Susann Eichler
Manuela Cerina
Lisa Epping
Sarah Albrecht
Amélie F. Menke
Katharina Birkner
Kerstin Göbel
Thomas Budde
Frauke Zipp
Heinz Wiendl
Ali Gorji
Stefan Bittner
Sven G. Meuth
author_sort Petra Hundehege
title Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
title_short Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
title_full Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
title_fullStr Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
title_full_unstemmed Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
title_sort targeting voltage-dependent calcium channels with pregabalin exerts a direct neuroprotective effect in an animal model of multiple sclerosis
publisher Cell Physiol Biochem Press GmbH & Co KG
series Neurosignals
issn 1424-862X
1424-8638
publishDate 2018-11-01
description Background/Aims: Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. Methods: We tested the impact of pregabalin in a mouse model of MS (experimental autoimmune encephalomyelitis, EAE) and performed histological and immunological evaluations as well as intravital two-photon-microscopy of brainstem EAE lesions. Results: Both prophylactic and therapeutic treatments ameliorated the clinical symptoms of EAE and reduced immune cell infiltration into the CNS. On neuronal level, pregabalin reduced long-term potentiation in hippocampal brain slices indicating an impact on mechanisms of learning and memory. In contrast, T cells, microglia and brain endothelial cells were unaffected by pregabalin. However, we found a direct impact of pregabalin on neurons during CNS inflammation as it reversed the pathological elevation of neuronal intracellular Ca2+ levels in EAE lesions. Conclusion: The presented data suggest that pregabalin primarily acts on neuronal Ca2+ channel trafficking thereby reducing Ca2+-mediated cytotoxicity and neuronal damage in an animal model of MS. Future clinical trials need to assess the benefit for neuronal survival by expanding the indication for pregabalin administration to MS patients in further disease phases.
topic Multiple sclerosis
Pregabalin
Experimental autoimmune encephalomyelitis
Neuroprotection
url https://www.karger.com/Article/FullText/495425
work_keys_str_mv AT petrahundehege targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT juncalfernandezorth targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT piaromer targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT tobiasruck targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT thomasmuntefering targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT susanneichler targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT manuelacerina targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT lisaepping targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT sarahalbrecht targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT ameliefmenke targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT katharinabirkner targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT kerstingobel targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT thomasbudde targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT fraukezipp targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT heinzwiendl targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT aligorji targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT stefanbittner targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
AT svengmeuth targetingvoltagedependentcalciumchannelswithpregabalinexertsadirectneuroprotectiveeffectinananimalmodelofmultiplesclerosis
_version_ 1724478338992439296