Kempe-Locking Configurations

The 4-color theorem was proved by showing that a minimum counterexample cannot exist. Birkhoff demonstrated that a minimum counterexample must be internally 6-connected. We show that a minimum counterexample must also satisfy a coloring property that we call Kempe-locking. The novel idea explored in...

Full description

Bibliographic Details
Main Author: James Tilley
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/12/309