Kempe-Locking Configurations
The 4-color theorem was proved by showing that a minimum counterexample cannot exist. Birkhoff demonstrated that a minimum counterexample must be internally 6-connected. We show that a minimum counterexample must also satisfy a coloring property that we call Kempe-locking. The novel idea explored in...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/6/12/309 |