Sharp Geometric Mean Bounds for Neuman Means
We find the best possible constants α1,α2,β1,β2∈[0,1/2] and α3,α4,β3,β4∈[1/2,1] such that the double inequalities G(α1a+(1-α1)b,α1b + (1-α1)a)<NAG(a,b)<G(β1a + (1-β1)b,β1b+(1-β1)a),G(α2a+(1-α2)b,α2b + (1-α2)a)<NGA(a,b)<G(β2a + (1-β2)b,β2b+(1-β2)a),Q(α3a+(1-α3)b,α3b + (1-α3)a)<NQA(a,b)...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/949815 |