Understanding interferometry for micro-cantilever displacement detection

Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end deliverin...

Full description

Bibliographic Details
Main Authors: Alexander von Schmidsfeld, Tobias Nörenberg, Matthias Temmen, Michael Reichling
Format: Article
Language:English
Published: Beilstein-Institut 2016-06-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.7.76
id doaj-530f83b94f1b4358b6137d2859246795
record_format Article
spelling doaj-530f83b94f1b4358b6137d28592467952020-11-25T01:26:13ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862016-06-017184185110.3762/bjnano.7.762190-4286-7-76Understanding interferometry for micro-cantilever displacement detectionAlexander von Schmidsfeld0Tobias Nörenberg1Matthias Temmen2Michael Reichling3Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, GermanyFachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, GermanyFachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, GermanyFachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, GermanyInterferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions.https://doi.org/10.3762/bjnano.7.76displacement noise spectral densityinterferometernon-contact atomic force microscope (NC-AFM)opto-mechanic effects
collection DOAJ
language English
format Article
sources DOAJ
author Alexander von Schmidsfeld
Tobias Nörenberg
Matthias Temmen
Michael Reichling
spellingShingle Alexander von Schmidsfeld
Tobias Nörenberg
Matthias Temmen
Michael Reichling
Understanding interferometry for micro-cantilever displacement detection
Beilstein Journal of Nanotechnology
displacement noise spectral density
interferometer
non-contact atomic force microscope (NC-AFM)
opto-mechanic effects
author_facet Alexander von Schmidsfeld
Tobias Nörenberg
Matthias Temmen
Michael Reichling
author_sort Alexander von Schmidsfeld
title Understanding interferometry for micro-cantilever displacement detection
title_short Understanding interferometry for micro-cantilever displacement detection
title_full Understanding interferometry for micro-cantilever displacement detection
title_fullStr Understanding interferometry for micro-cantilever displacement detection
title_full_unstemmed Understanding interferometry for micro-cantilever displacement detection
title_sort understanding interferometry for micro-cantilever displacement detection
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2016-06-01
description Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions.
topic displacement noise spectral density
interferometer
non-contact atomic force microscope (NC-AFM)
opto-mechanic effects
url https://doi.org/10.3762/bjnano.7.76
work_keys_str_mv AT alexandervonschmidsfeld understandinginterferometryformicrocantileverdisplacementdetection
AT tobiasnorenberg understandinginterferometryformicrocantileverdisplacementdetection
AT matthiastemmen understandinginterferometryformicrocantileverdisplacementdetection
AT michaelreichling understandinginterferometryformicrocantileverdisplacementdetection
_version_ 1725110086697746432