Alternative splicing of the cardiac sodium channel creates multiple variants of mutant T1620K channels.
Alternative splicing creates several Na(v)1.5 transcripts in the mammalian myocardium and in various other tissues including brain, dorsal root ganglia, breast cancer cells as well as neuronal stem cell lines. In total nine Na(v)1.5 splice variants have been discovered. Four of them, namely Na(v)1.5...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2011-04-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3084281?pdf=render |