Tunable inverse spin Hall effect in nanometer-thick platinum films by ionic gating
The ability to electrically control spintronic materials significantly widens their potential for integration into devices, but it is difficult to achieve in metals with high carrier densities. Here the authors demonstrate ionic liquid gated control of the inverse spin Hall effect in platinum.
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-05611-9 |