Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy

Abstract Background Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson’s disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathw...

Full description

Bibliographic Details
Main Authors: Jia-Zhen Wu, Mustafa Ardah, Caroline Haikal, Alexander Svanbergsson, Meike Diepenbroek, Nishant N. Vaikath, Wen Li, Zhan-You Wang, Tiago F. Outeiro, Omar M. El-Agnaf, Jia-Yi Li
Format: Article
Language:English
Published: BMC 2019-06-01
Series:Translational Neurodegeneration
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40035-019-0159-7
Description
Summary:Abstract Background Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson’s disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation processes of α-synuclein. Dysfunction of the CMA pathway impairs α-synuclein degradation and causes cytotoxicity. Results In the present study, we investigated the effects on the CMA pathway and α-synuclein aggregation using bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal plants. In both cell-free and cellular models of α-synuclein aggregation, after administration of DHM and Sal B, we observed significant inhibition of α-synuclein accumulation and aggregation. Cells were co-transfected with a C-terminal modified α-synuclein (SynT) and synphilin-1, and then treated with DHM (10 μM) and Sal B (50 μM) 16 hours after transfection; levels of α-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B). Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A with α-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and LAMP-2A both in vitro and in vivo, along with decreased levels of α-synuclein. Moreover, DHM and Sal B treatments exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-α-syn-GFP transgenic mice. Conclusions Our data indicate that DHM and Sal B are effective in modulating α-synuclein accumulation and aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson’s disease.
ISSN:2047-9158